131 research outputs found

    Applying the Pennsylvania Environmental Rights Amendment Meaningfully to Climate Disruption

    Get PDF
    The Pennsylvania Constitution contains a unique Environmental Rights Amendment (ERA), which recognizes an individual right to “clean air, pure water, and to the preservation of the natural, scenic, historic and esthetic values of the environment.” The ERA also includes a public trust element that makes “Pennsylvania’s public natural resources . . . the common property of all the people, including generations yet to come.” It makes the Commonwealth the “trustee of these resources,” requiring it to “conserve and maintain them for the benefit of all the people.” Recent decisions by the Pennsylvania Supreme Court (the Court) in Robinson Township v. Commonwealth and Pennsylvania Environmental Defense Foundation v. Commonwealth provide significant support for Pennsylvania regulations to address the threat of climate disruption posed by greenhouse gas (GHG) emissions to achieve net zero carbon emissions by the middle of this century. In light of the threats that climate disruption poses to Pennsylvania’s public natural resources, the text of the ERA, and the principles articulated in those recent cases, we argue that a stable climate (a climate that has not been disrupted by anthropogenic emissions of GHGs) should be considered protected by the rights recognized by the ERA, and the public trust duties it creates. We argue that these rights and duties require Pennsylvania to employ regulatory measures to reduce GHG emissions to the level warranted by the social cost of carbon and to achieve carbon neutrality (net zero emissions) by mid-century. Further, we argue that there are judicially recognizable standards to compel the Commonwealth to exercise its existing authority to limit GHG emissions. In light of existing legislative authority, the obligations imposed by the United Nations Framework Convention on Climate Change, the Paris Agreement, and the federal Clean Air Act, we make the case that this regulatory program should take the form of an economy-wide cap-and-trade program providing for the auction of allowances with a reserve price based on the social cost of carbon and additional measures to prevent leakage and a cap reaching carbon neutrality by mid-century

    CEDNIK: Phenotypic and molecular characterization of an additional patient and review of the literature

    Get PDF
    Synaptosomal-associated protein 29 (SNAP29) is a t-SNARE protein that is implicated in intracellular vesicle fusion. Mutations in the SNAP29 gene have been associated with cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome (CEDNIK). In patients with 22q11.2 deletion syndrome, mutations in SNAP29 on the nondeleted chromosome are linked to similar ichthyotic and neurological phenotypes. Here, the authors report a patient with cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome who presented with global developmental delay, polymicrogyria, dysgenesis of the corpus callosum, optic nerve dysplasia, gaze apraxia, and dysmorphic features. He has developed ichthyosis and palmoplantar keratoderma as he has grown. Exome sequencing identified a homozygous nonsense mutation in SNAP29 gene designated as c.85C>T (p.Arg29X). The authors compare the findings in the proband with previously reported cases. The previously unreported mutation in this patient and his phenotype add to the characterization of cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome and the accumulating scientific evidence that implicates synaptic protein dysfunction in various neuroectodermal conditions

    Case report: A novel EIF2B3 pathogenic variant in central nervous system hypomyelination/vanishing white matter

    Get PDF
    Leukodystrophies are a group of heterogeneous disorders affecting brain myelin. Among those, childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM) is one of the more common inherited leukodystrophies. Pathogenic variants in one of the genes encoding five subunits of EIF2B are associated with CACH/VWM. Herein, we presented a case of CACH/VWM who developed ataxia following a minor head injury. Brain magnetic resonance imaging showed extensive white matter signal abnormality. Diagnosis of CACH/VWM was confirmed by the presence of compound heterozygous variants i

    Longitudinal prediction of infant MR images with multi-contrast perceptual adversarial learning

    Get PDF
    The infant brain undergoes a remarkable period of neural development that is crucial for the development of cognitive and behavioral capacities (Hasegawa et al., 2018). Longitudinal magnetic resonance imaging (MRI) is able to characterize the developmental trajectories and is critical in neuroimaging studies of early brain development. However, missing data at different time points is an unavoidable occurrence in longitudinal studies owing to participant attrition and scan failure. Compared to dropping incomplete data, data imputation is considered a better solution to address such missing data in order to preserve all available samples. In this paper, we adapt generative adversarial networks (GAN) to a new application: longitudinal image prediction of structural MRI in the first year of life. In contrast to existing medical image-to-image translation applications of GANs, where inputs and outputs share a very close anatomical structure, our task is more challenging as brain size, shape and tissue contrast vary significantly between the input data and the predicted data. Several improvements over existing GAN approaches are proposed to address these challenges in our task. To enhance the realism, crispness, and accuracy of the predicted images, we incorporate both a traditional voxel-wise reconstruction loss as well as a perceptual loss term into the adversarial learning scheme. As the differing contrast changes in T1w and T2w MR images in the first year of life, we incorporate multi-contrast images leading to our proposed 3D multi-contrast perceptual adversarial network (MPGAN). Extensive evaluations are performed to assess the qualityand fidelity of the predicted images, including qualitative and quantitative assessments of the image appearance, as well as quantitative assessment on two segmentation tasks. Our experimental results show that our MPGAN is an effective solution for longitudinal MR image data imputation in the infant brain. We further apply our predicted/imputed images to two practical tasks, a regression task and a classification task, in order to highlight the enhanced task-related performance following image imputation. The results show that the model performance in both tasks is improved by including the additional imputed data, demonstrating the usability of the predicted images generated from our approach

    Imaging features of neonatal systemic juvenile xanthogranuloma: A case report and review of the literature

    Get PDF
    Juvenile xanthogranuloma (JXG) is the most common non-Langerhans cell histiocytic disorder in children. This report describes the case of a 28-day-old boy that presented with multiple subcutaneous nodular lesions on the trunk and extremities, and multiple red nodular lesions on the scrotum. Magnetic resonance imaging (MRI) of the brain showed a well-demarcated extra-axial dura-based mass that appeared isointense or slightly hyperintense on T1-weighted images, hypointense on T2-weighted images and had intense enhancement on gadolinium-enhanced T1-weighted images. Computed tomography (CT) or MRI scans of the chest and abdomen revealed multiple scattered nodular or patchy lesions of varying sizes in the lungs, liver and left kidney. Histological analysis of a subcutaneous mass suggested JXG. The patient was diagnosed with neonatal systemic JXG with involvement of the central nervous system, lungs, liver, kidneys, subcutaneous soft tissue and skin. CT and MRI after 3 months of treatment with methylprednisolone sodium succinate demonstrated that the lesions were obviously diminished. This report discusses the imaging findings in this current case of multi-organ JXG and reviews the imaging literature on this condition to improve awareness of the lesions in order to help radiologists establish an accurate differential diagnosis when confronted with similar cases

    De novo development of gliomas in a child with neurofibromatosis type 1, fragile X and previously normal brain magnetic resonance imaging

    Get PDF
    AbstractFifteen to 20% of children with neurofibromatosis type 1 develop low-grade glial neoplasms. However, since neuroimaging is not routinely obtained until a child is clinically symptomatic, little is known about presymptomatic radiographic characteristics of gliomas in this at-risk population. Herein, we describe a child with neurofibromatosis type 1 who initially had normal brain imaging before the development of multifocal gliomas. Comparison of these serial images demonstrated that brain tumors can arise de novo in children with this cancer predisposition syndrome, further underscoring the limited prognostic value of normal baseline magnetic resonance imaging

    Trial of erythropoietin for hypoxic-ischemic encephalopathy in newborns

    Get PDF
    BACKGROUND: Neonatal hypoxic-ischemic encephalopathy is an important cause of death as well as long-term disability in survivors. Erythropoietin has been hypothesized to have neuroprotective effects in infants with hypoxic-ischemic encephalopathy, but its effects on neurodevelopmental outcomes when given in conjunction with therapeutic hypothermia are unknown. METHODS: In a multicenter, double-blind, randomized, placebo-controlled trial, we assigned 501 infants born at 36 weeks or more of gestation with moderate or severe hypoxic-ischemic encephalopathy to receive erythropoietin or placebo, in conjunction with standard therapeutic hypothermia. Erythropoietin (1000 U per kilogram of body weight) or saline placebo was administered intravenously within 26 hours after birth, as well as at 2, 3, 4, and 7 days of age. The primary outcome was death or neurodevelopmental impairment at 22 to 36 months of age. Neurodevelopmental impairment was defined as cerebral palsy, a Gross Motor Function Classification System level of at least 1 (on a scale of 0 [normal] to 5 [most impaired]), or a cognitive score of less than 90 (which corresponds to 0.67 SD below the mean, with higher scores indicating better performance) on the Bayley Scales of Infant and Toddler Development, third edition. RESULTS: Of 500 infants in the modified intention-to-treat analysis, 257 received erythropoietin and 243 received placebo. The incidence of death or neurodevelopmental impairment was 52.5% in the erythropoietin group and 49.5% in the placebo group (relative risk, 1.03; 95% confidence interval [CI], 0.86 to 1.24; P = 0.74). The mean number of serious adverse events per child was higher in the erythropoietin group than in the placebo group (0.86 vs. 0.67; relative risk, 1.26; 95% CI, 1.01 to 1.57). CONCLUSIONS: The administration of erythropoietin to newborns undergoing therapeutic hypothermia for hypoxic-ischemic encephalopathy did not result in a lower risk of death or neurodevelopmental impairment than placebo and was associated with a higher rate of serious adverse events. (Funded by the National Institute of Neurological Disorders and Stroke; ClinicalTrials.gov number, NCT02811263.)

    Exploring Metapopulation-Scale Suppression Alternatives for a Global Invader in a River Network Experiencing Climate Change

    Get PDF
    Invasive species can dramatically alter ecosystems, but eradication is difficult, and suppression is expensive once they are established. Uncertainties in the potential for expansion and impacts by an invader can lead to delayed and inadequate suppression, allowing for establishment. Metapopulation viability models can aid in planning strategies to improve responses to invaders and lessen invasive species’ impacts, which may be particularly important under climate change. We used a spatially-explicit metapopulation viability model to explore suppression strategies for ecologically-damaging invasive brown trout (Salmo trutta), established in the Colorado River and a tributary within Grand Canyon National Park. Our goals were to: 1) estimate the effectiveness of strategies targeting different life stages and subpopulations within a metapopulation, 2) quantify the effectiveness of a rapid response to a new invasion relative to delaying action until establishment; and 3) estimate whether future hydrology and temperature regimes related to climate change and reservoir management affect metapopulation viability and alter the optimal management response. We included scenarios targeting different life-stages with spatially-varying intensities of electrofishing, redd destruction, incentivized angler harvest, piscicides, and a weir. Quasi-extinction (QE) was obtainable only with metapopulation-wide suppression targeting multiple life-stages; subpopulations were most sensitive to age-0 and large adult mortality. The duration of suppression needed to reach QE for a large established subpopulation was triple compared to a rapid response to a new invasion. Isolated subpopulations were vulnerable to suppression; however, connected tributary subpopulations enhanced metapopulation persistence by serving as climate refuges. Water shortages driving changes in reservoir storage and subsequent warming would cause brown trout declines, but metapopulation QE was only achieved by re-focusing and increasing suppression. Our modeling approach improved our understanding of invasive brown trout metapopulation dynamics, which could lead to more focused and effective invasive species suppression strategies, and ultimately, maintenance of populations of endemic fishes
    • …
    corecore